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Lightcone SFT: Mandelstam, Kaku/Kikkawa,... (early 1970s)

String field: Ψlc ∈ C∞(R1,1)⊗HX i = Span(αi
−n...|kµ⟩)�- c = 24

Gauge invariance: None.

Interactions: Mandelstam diagrams.

p−



Covariant SFT: Witten, Zwiebach,... (late 1980s)

String field: Ψcov ∈ HXµ ⊗Hbc = Span(αµ
−n...b−m...c−l |kµ⟩)

&- c = 26


- c = −26

Gauge invariance: δΨcov = QΛ + higher orders in Ψcov

Interactions: e.g. Witten’s theory.

π



Elementary question: How are these SFTs related?

The rough answer is basically what you would expect, namely:

Lightcone SFT is covariant SFT fixed to lightcone gauge.

Less obviously, the lightcone gauge condition turns out to be:(
b0 + ip−

∮
dξ

2πi

b(ξ)

∂X+(ξ)

)
Ψcov = 0



How this works:

The covariant string field can be decomposed into transverse and
longitudinal parts:

Ψcov = transverse + longitudinal

▶ transverse is isomorphic to the standard lightcone string field
Ψlc.

▶ longitudinal is subject to purely algebraic equations of motion
when the lightcone gauge condition is satisfied. Therefore it
can be integrated out.

The result is an action for Ψlc without gauge symmetry. Therefore
it can be called “lightcone SFT.”



However, lightcone SFT (as conventionally understood) is
characterized not only by Ψlc, but by the fact that interactions
take place through Mandelstam diagrams.

It is far from clear that fixing lightcone gauge in a typical covariant
SFT results in a conventional lightcone SFT.



However:

Kaku-Kikkawa

lightcone SFT
=

Kugo-Zwiebach SFT

in lightcone gauge

(T.E. and H. Matsunaga, 2020)

The Kugo-Zwiebach SFT is a covariant SFT whose interactions are
defined by lightcone-style vertices.

Lightcone vertices are preserved through the process of fixing
lightcone gauge and integrating out longitudinal states.

→ transfer invariance.



However, the Kugo-Zwiebach theory is not quite a covariant SFT,
since lightcone interactions are not Lorentz invariant.

Moreover, while transfer invariance is not trivial, perhaps it is not
surprising that we get conventional lightcone interactions from a
covariant SFT which already has such interactions.



This leads to the question:

What kind of “lightcone SFT” results from fixing lightcone gauge
in a typical covariant SFT?

This is the question we address in this talk.



Cubic vertex
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In lightcone gauge, the cubic vertex reduces to a cubic lightcone
vertex attached to stubs.

Remarkably, regardless of the geometry of the covariant cubic
vertex, once we fix lightcone gauge a Mandelstam diagram appears.



The only information about the covariant vertex that survives in
lightcone gauge is the local dilatation at the punctures.

The lengths of the stubs attached to the cubic lightcone vertex are
fixed so that the local dilatation at the punctures is the same in
the covariant theory as it is after fixing lightcone gauge.

In other words, for primary states the vertex is the same before and
after fixing lightcone gauge.



However, there is a strange difficulty. If one string is “soft,” the
local dilatation at the corresponding puncture is very small.

soft

Since the local dilatation at the puncture of a covariant vertex is
fixed, the stub attached to this state needs to be shortened.
Eventually, its length will need to be negative:

𝓁 < 0

This is not a normalizable string vertex.



Therefore lightcone gauge in covariant SFT is generically singular.

This is called the soft string problem of lightcone gauge. It
continues to be an obstacle to formulating a precise relation
between covariant and lightcone SFTs.

In the following we will assume that amplitudes are evaluated in a
kinematic region where lightcone gauge is well-defined.



Next: What happens to higher order interactions in lightcone
gauge?



Details of lightcone gauge

Important operators:

bDDF= −ip−

∮
dξ

2πi

b(ξ)

∂X+(ξ)

LDDF= 2p+p− − ip−

∮
dξ

2πi

TX i
(ξ)− 2{X+, ξ}
∂X+(ξ)

= [Q, bDDF]

Note that bDDF and LDDF are conformally invariant operators

LDDF is the level counting operator for DDF/transverse excitations
in the string field.

If Ψcov is the covariant string field, lightcone gauge is:(
b0 − bDDF

)
Ψcov = 0



▶ If L0 = LDDF, all excitations in the string field are transverse.

▶ If L0 > LDDF some excitations of the string field come from
unphysical ghost and longitudinal oscillator excitations.

Therefore we have decomposition

Ψcov =

L0=LDDF︷ ︸︸ ︷
SΨlc +

L0>LDDF︷ ︸︸ ︷
SΨunphysical�- turns transverse oscillators
into DDF operators

Specifically:

Sαi
−n = e

in
2p−

x+

DDF operator︷ ︸︸ ︷(
i
√
2

∮
dξ

2πi
e
− in

p−
X+(ξ)

∂X i (ξ)

)
S

�- conformally invariant�- zero mode prefactor



The propagator in lightcone gauge breaks into transverse and
longitudinal parts

∆lc =
b0
L0

δ(L0 − LDDF) +
b0 − bDDF

L0 − LDDF︸ ︷︷ ︸
∆long

The longitudinal propagator does not have any poles, so the
longitudinal states can be integrated out.



If the original action is

S =
1

2
ω(Ψcov,QΨcov) +

1

3
ω(Ψcov,m2(Ψcov,Ψcov))

+
1

4
ω(Ψcov,m3(Ψcov,Ψcov,Ψcov)) + ...

the resulting gauge fixed action is

Slc=
1

2
ω(Ψlc, c0L0Ψlc) +

1

3
ω(Ψlc,m

lc
2 (Ψlc,Ψlc))

+
1

4
ω(Ψlc,m

lc
3 (Ψlc,Ψlc,Ψlc)) + ...

The products mlc
2 ,m

lc
3 , ... are given by a Feynman graph expansion,

where the vertices are those of the original covariant SFT and the
internal lines represent longitudinal propagators.
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Vertices without longitudinal propagators

For open strings, the n-point vertex in a covariant SFT is given by
integrating surface states ⟨Σn| over some portion of the moduli
space of disks with boundary punctures.

The surface states contribute to the lightcone gauge action as

⟨Σn|SA1 ⊗ ...SAn

where SAi are transverse string states.



Point 1:

Since S maps transverse oscillators into DDF operators, the local
coordinate maps which define ⟨Σn| only effect the result through
the zero mode prefactor.

f ◦
[
e

in
2p−

x+
(
i
√
2

∮
0

dξ

2πi
e
− in

p−
X+(ξ)

∂X i (ξ)

)]
= e

in
2p−

f ◦x+
(
i
√
2

∮
f (0)

du

2πi
e
− in

p−
X+(u)

∂X i (u)

)

Therefore, much of the geometrical information which defines the
covariant n-string vertex is lost when we fix lightcone gauge.



Point 2:

Let F [X+(u)] be an operator on the upper half plane which
depends on chiral free boson X+(u) but not X−(u). Then〈

F [X+(u)]e ik
1·X (u1,u1)...e ik

n·X (un,un)
〉
UHP

=

〈
F

[
− i

2
ρ(u)

]
e ik

1·X (u1,u1)...e ik
n·X (un,un)

〉
UHP

where

ρ(u) =
n∑

i=1

2k i− ln(u − ui )

is the Mandelstam mapping.

** * * * * * * * *u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

UHP

Mandelstam 
diagramρ(u)



This is called the replacement formula.

It says that in the context of this correlator, the coordinate rho on
a Mandelstam diagram is proportional to the plus component of
the string embedding coordinate.

It is as though the string worldsheet has been quantized in
lightcone gauge.



Using the replacement formula, the DDF operators evaluate to

i
√
2

∮
du

2πi
e
− in

p−
X+(u)

∂X i (u) = i
√
2

∮
du

2πi
e
− n

2p−
ρ(u)

∂X i (u)

Remarkably, this is the same as a conformal transformation of the
transverse oscillator:

ρ−1 ◦ (2p− ln) ◦ αi
−n

The geometry of the surface state is replaced by the geometry of a
Mandelstam diagram!



Precise statement:

⟨Σn|SA1 ⊗ ...SAn = ⟨Σlc
n |
(
e−λ1L0 ⊗ ...⊗ e−λnL0

)
A1 ⊗ ...⊗ An

where

▶ ⟨Σlc
n | is the canonical surface state associated to the

Mandelstam diagram at the same point in moduli space as
⟨Σn|,

▶ Stub length parameters λ1, ..., λn ensure that the local
dilitation at the punctures agree of both sides.

The covariant vertex between transverse states reduces to a
collection of Mandelstam diagrams representing the same portion
of moduli space.



But since the local coordinates are changed, the Feynman
diagrams defined by the covariant vertices alone do not cover the
moduli spaces of Riemann surfaces in lightcone gauge.

For example, 5-point amplitudes:

0 propagators

1 propagator

2 propagators

missing region

To get the missing region, we must apparently account for the
propogation of longitudinal states.



Dealing with longitudinal propagators raises two questions:

1. A strip of longitudinal worldsheet has nonvanishing central
charge. Therefore the worldsheet partition function is
nontrivial.

2. How does a strip of longitudinal worldsheet move in moduli
space?



Partition functions on Mandelstam diagrams

Kugo-Zwiebach phenomenon:

Transverse Siegel gauge amplitudes are equal to lightcone gauge
amplitudes in the Kugo-Zwiebach theory.

It does not matter whether we use

b0
L0

or
b0
L0

δ(L0 − LDDF) + ∆long

for the propagator!



Due to transfer invariance of lightcone vertices, we know that we
can drop ∆long from the lightcone gauge propagator.

Therefore it does not matter whether the propagator is

b0
L0

or
b0
L0

δ(L0 − LDDF) =
b0
L0

e−∞(L0−LDDF)

The latter suggests that transverse Siegel gauge amplitudes in the
Kugo-Zwiebach theory do not contain longitudinal intermediate
states.



If this is the case, we should be able to adjust the length of a
propagator strip seperately in the longitudinal sector without
changing the result.

e−sL0 = e−sLDDFe−s(L0−LDDF) = e−sLDDFe−s′(L0−LDDF)

= =

longitudinal

transverse

In this way, the transverse propagator strips of lightcone SFT can
be accompanied with longitudinal propagator strips, obtaining
correlation function on in worldsheet with vanishing central charge.

This gives a way to handle the conformal anomaly and partition
functions on Mandelstam diagrams in lightcone SFT.



Vertices with longitudinal propagators

The longitudinal propagator takes the form:

∆long = (b0 − bDDF)

∫ ∞

0
dse−s(L0−LDDF)

The trick to is to let the e−sL0 factor generate surface which
defines the worldsheet correlation function.

The factor esLDDF is then treated separately as an operator
insertion in the correlation function.



For the 4-point amplitude, this leads to a correlation function of
the following form:

* * * *0 m 1 ∞

e sL
Xi

0

* *0 m 1 ∞

e sLDDF

* *

replacement formula

Applying the replacement formula, the local coordinates for the
Feynman diagram of the covariant theory are replaced by local
coordinates at the same point in moduli space in the lightcone
theory.

The operator LDDF is replaced by the Virasoro generator LX
i

0 of the
transverse CFT.



In this way the longitudinal propagator reduces to the integral∫ ∞

0
ds e−slc(s)L0+sLX

i

0

where slc(s) is the Schwinger parameter in the lightcone diagram
which corresponds to the same point in moduli space as the
Schwinger parameter s in the covariant diagram.

Moreover, we can adjust the length of a strip of longitudinal
worldsheet to replace

slc(s)L0 − sLX
i

0 → (slc(s)− s)L0

Thus the longitudinal propagator gives∫ ∞

0
ds e−slc(s)−s)L0

This integral precisely covers the missing region of moduli space.



Thank you!


