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Motivation

How exactly do quantum field theories organise themselves into string theories
in the large N limit? [’t Hooft’74]
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and bulk) are not decipherable simultaneously in the proposed examples,
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Recent progress on AdS3/CFT2 and AdS5/CFT4 overcomes this difficulty
giving explicit description of tensionless strings in the bulk, dual to free CFTs
on the boundary, in the large N limit.
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Gopakumar’s program of gluing worldlines into worldsheet proposes one
mechanism for Gauge/String dualities. [Gopakumar’03-05]

Can we revisit Gopakumar’s construction in the context of these exact dualities?
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Motivation: Output

We will show how Gopakumar’s prescription works explicitly for AdS3/CFT2

and (to some extent) for AdS5/CFT4:

Feynman Graph ⇔ Strebel Graph ⇔ Point in the String moduli space.

Proposal =⇒ Explicit Construction



Outline

1. Symmetric Product CFTs and Covering surfaces, and Matrix model,

2. Feynman graph ⇔ Matrix model solution ⇔ Strebel graph ⇔ point in the
String moduli space,

3. Twistor covering in AdS3,

4. Twistor covering in AdS5,

5. An explicit covering map for AdS5 whose area reproduces Feynman
propagator.



Symmetric Product Orbifold CFT

We will consider the symmetric product orbifold CFT

SymK (M) ≡ (M)⊗K/SK

which corresponds to taking K copies of sigma models on M and identifying
them by the permutation group SK .

Untwisted sector: states invariant under the permutation.

Twisted sector: Single-cycle twist field σw (w is the cycle length)

φl(e
2πiz + ζ)Ow (ζ) = φπw (l)(z + ζ)Ow (ζ)

Twist operator Ow induces a w -fold cyclic permutation amongst some of the K
copies of the seed theory.



Twist Correlators and Covering Map

G = 〈Ow1 (x1) · · · Own (xn)〉

Locally the w -cycle twist field Ow (x0) induces a w-fold covering

z 7→ Γ(z) = x0 + a(z − z0)w + · · ·

We can combine these local coverings near all the insertion points into an
(auxiliary) global covering surface Σ described by the covering map

Γ : Σ[z]→ S2[x ]

and then exploit the covering map to uplift the calculation of G to the covering
surface.

[Lunin-Mathur’00]



Degree of the Covering Map

Number of sheets involved in the covering surface is given by

N = 1 +
1

2

n∑
j=1

(wj − 1)

which is the degree of the covering map Γ[z]



Twist Correlators

On the covering surface the ground state twist fields Owi becomes identity 1,
since their monodromy behaviour is captured by the covering surface itself. So
only the conformal factor for the map Γ : Σ→ S2 contributes in G :

〈Ow1 (x1) · · · Own (xn)〉 =
∑

Γ

WΓe
−SL[ΦΓ] ,

where

SL[Φ] =
c

48π

∫
d2z
√
g
(

2 ∂Φ ∂̄Φ + R Φ
)

with
ΦΓ = log ∂zΓ(z) + log ∂z̄ Γ̄(z̄)

.

[Lunin-Mathur’00]



Covering Map requires to solve Matrix Model

Covering map:

∂Γ(z) = MΓ

∏n−1
i=1 (z − zi )

wi−1∏N
a=1(z − λa)2

,

The poles are determined by

n−1∑
i=1

wi − 1

λa − zi
=

N∑
b 6=a

2

λa − λb
, (a = 1, . . . ,N) .

In the large N (i.e large twist) limit, it essentially becomes the saddle-point
equation of the Matrix model

Z =

∫
[dM]e−N TrW (M) =

∫ N∏
a=1

dλa

2π

N∏
a<b

(λa − λb)2 e−N
∑N

a=1 W (λa) ,

where the potential has a logarithmic Penner-like form

W (z) =
n−1∑
i=1

αi log (z − zi ) ,

[Gaberdiel-Gopakumar-Knighton-PM’20]
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Poles of the Covering Map coalesce in the large N limit

n−1∑
i=1

wi − 1

λa − zi
=

N∑
b 6=a

2

λa − λb
, (a = 1, . . . ,N) .

The dynamics of the eigenvalues {λa} are determined by two forces:
1)Logarithmic attractive potential (l.h.s) and 2)Coulomb repulsion (r.h.s).

In the large N limit, they localize on a set of curves C on the complex plane.
Spectral curve: [ y(z) = 1

N
∂ log ∂Γ ]

y0(z) =
αn∏n−1

i=1 (z − zi )

√√√√2n−4∏
k=1

(z − ak) .

This spectral curve defines a “branching surface” of genus (n − 3).

2n − 4 = 2 (n − 3)︸ ︷︷ ︸
g

+ 2

(n − 3) A-cylcles and (n − 3) B-cycles



Comments on finite N

− 2

N2
S [Γ](z) = y 2

0 (z)− 2

N
W ′′(z)− 4

N
R1(z)

S [Γ](z) : Schwarzian of the covering map

We will observe that y 2
0 (z) defines the Strebel metric on the covering surface

and it is an open question whether, at finite N, how does the Strebel
differential differ from the Schwarzian S [Γ](z)...



Diagramatics of Symmetric Product CFTs

I “Feynman diagram” for Symmetric product orbifold CFTs is the inverse
image (Γ−1) of the Jordan curve (b).

I Poles of Γ(z) {λa} (inverse image of x =∞) are located inside all of the
N colored faces.

[Pakman-Rastelli-Razamat’20]
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Diagramatics of Symmetric Product CFTs

Figure 1: One Feynman graph and it’s dual for four-point correlator 〈σ[5]σ[5]σ[5]σ[5]〉

Each diagram defines a distinct covering map.

[Pakman-Rastelli-Razamat’09]



Diagramatics of Symmetric Product CFTs

Poles of the covering map coalesce in the large N to form the edges of the dual
skeleton graph.

[Gaberdiel-Gopakumar-Knighton-PM’20]



Diagramatics ⇔ Spectral curve

y0(z) =
αn∏n−1

i=1 (z − zi )

√√√√2n−4∏
k=1

(z − ak) .

The cuts form the dual Feynman graph of the symmetric product orbifold CFT.



Diagramatics ⇔ Spectral curve

Periods of A and B-cycles (nij , ñij) count the fraction of eigenvalues (Wick

contractions) localized in the cuts (dual edge (̂ij)).

1
4πi

∮
Al
y0(z)dz ≡ νl = n(l)

2N
1

4πi

∮
Bl
y0(z)dz ≡ µl = ñ(l)

2N

for l = 1, · · · , (n − 3).

[Gaberdiel-Gopakumar-Knighton-PM’20]



Spectral curve and Strebel differential

The spectral curve defines a special quadratic differential: “Strebel differential”

− 1

4π2
y 2

0 (z)dz2 ≡ φS(z)dz2.

Strebel differential is a quadratic differential holomorphic everywhere except
with double poles at n marked points zi such that all the “lengths” between its
zeroes {ak} are real

lkm =

∫ am

ak

√
φS(z) ∈ R+ .

The latter condition is clearly satisfied due to

1
4πi

∮
Al
y0(z)dz ≡ νl = n(l)

2N
1

4πi

∮
Bl
y0(z)dz ≡ µl = ñ(l)

2N



Strebel graph ⇔ Dual Feynman graph

Strebel graph ⇔ Dual Feynman graph



From Fields to Strings

A unique Strebel dif-
ferential/graph pa-
rameterized by {lij}

Each point in the dec-
orated Moduli space

(Σg,n|w1, · · · ,wn)

Strebel’s Theorem

Each covering map
Γ contribution in

〈O[w1] · · · O[wn ]〉 =
∑

Γ

e−SL[ΦΓ]

Spectral curve param-
eterized by {lA, lB}

[Matrix model analysis]

{lA, lB} = {lij}[manifestly]

Each point in the
string Moduli space
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Reconstructing the Worldsheet

〈Ow1 (x1) · · · Own (xn)〉 =
∑

Γ

WΓ e
−SL[ΦΓ]

Our dictionary:

1
N
∂ log ∂Γ = y0(z) = i

√
φS(z)

The Liouville action becomes

SL[Γ] =
cN2

48π

∫
d2z |φS(z)| = AreaStrebel gauge .

which is the Numbu-Goto worldsheet action in “Strebel gauge”.

〈Ow1 (x1) · · · Own (xn)〉 =
∑

Γ

WΓ e
−SL[ΦΓ] →

∫
M0,n

[Dm] e−Area

[Gaberdiel-Gopakumar-Knighton-PM’20]



Flowchart
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Gluing Graphs into Surfaces



Worldsheet on AdS3 × S3 × T4

I Worldsheet theory on AdS3 × S3 × T4 with k = 1 unit of NS-NS flux is
based on supersymmetric WZW model on the group manifold

psu(1, 1|2)1

together with topologically twisted sigma model for T4.

I psu(1, 1|2)1 WZW model has the free field realization in terms of 4 spin- 1
2

symplectic bosons {ξ±, η±} and 4 spin- 1
2

fermions {ψ±, χ±}.



Twistorial incidence relation

Exploiting the constraints from the OPE of the symplectic bosons ξ±, η± with
the spectrally flowed vertex operators V w

m,j(x ; z), the following striking relation
holds

〈(ξ−(z) + Γ(z)ξ+(z))〉phys = 0

[Dei-Gaberdiel-Gopakumar-Knighton’20]

where the bracket denote the expectation value with the vertex operators. This
suggests a twistorial incidence relation

µȧ + xaȧλ
a = 0

We can define the Ambi-twistors out of the worlsheet variables

Z I =

(
ξ+

ξ−

)
, YI =

(
−η−
η+

)
where

YIZ
I = ξ−η+ − ξ+η− = 0,



Twistor fields in terms of AdS3 covering

Wakimoto representation of the sl(2,R)k=1 currents

J+ = β

J3 = −∂Φ + βγ

J− = −2γ∂Φ + βγγ − ∂γ

where {Φ, γ, γ̄} are identified with the fields parametrizing AdS3:

ds2
AdS3

= dΦ2 + e2Φdγd γ̄

[Eberhardt-Gaberdiel-Gopakumar’19]

These currents also have the free field representation in terms of pairs of
symplectic bosons ξ± and η± of psu(1, 1|2)1 as

J3(z) = −(η+ξ−)(z)

J±(z) = (η±ξ±)(z)

where
ξ+η− = ξ−η+



Twistor fields in terms of AdS3 covering

Comparing two representations of the currents

J+ = β

J3 = −∂Φ + βγ

J− = −2γ∂Φ + βγγ − ∂γ

J3 = −(η+ξ−)

J± = (η±ξ±)

with the constraint

ξ+η− = ξ−η+

we find the classical twistor solutions

ξ+ = −η+ = − ∂Φ√
∂γ
, ξ− = −η− =

γ∂Φ + ∂γ√
∂γ

[Bhat-Gopakumar-PM-Radhakrishnan’21]



Twistor fields in terms of AdS3 covering

ξ+ = −η+ = − ∂Φ√
∂γ
, ξ− = −η− =

γ∂Φ + ∂γ√
∂γ

I We obtain Stringy incidence relations

ξ− + γξ+ =
√
∂γ

η− + γη+ = −
√
∂γ

The right hand side is not zero but rather proportional to the radial profile:

r 2(z , z̄) ≡ e−2Φ(z,z̄) = ε2(∂γ) (∂̄γ̄)

using the classical solution for an n-point correlator:

γ(z) = Γ(z), Φ(z , z̄) = − log ε− 1

2
log |∂Γ|2



(Sugawara) Stress tensor of su(1, 1)1 written in terms of free-fields yield

T (z) =
1

2

[(
∂2γ

∂γ

)
− 1

2

(
∂2γ

∂γ

)2
]

=
1

2
S [γ(z)]

where we have used

γ(z) ≡ Γ(z), ∂Φ(z) = −1

2
∂ log[∂Γ(z)]

[Bhat-Gopakumar-PM-Radhakrishnan’21]



Given a covering map

Γ(z) =
PN(z)

QN(z)

we can express the twisor variables in terms of the polynomials PN(z) and
QN(z):

ξ+ = −η+ =
Q̃N+n−1(z)

2
∏n

i=1(z − zi )
(wi +1)

2

= − d

dz

[ QN(z)∏n
i=1(z − zi )

(wi−1)
2

]
and similarly,

ξ− = −η− = − P̃N+n−1(z)

2
∏n

i=1(z − zi )
(wi +1)

2

=
d

dz

[ PN(z)∏n
i=1(z − zi )

(wi−1)
2

]
.

where

P̃N+n−1(z) = R̃n−1(z)PN(z)− 2
n∏

i=1

(z − zi )P
′
N(z) .

and similarly for Q̃N+n−1(z).

[Bhat-Gopakumar-PM-Radhakrishnan’21]



Worldsheet on AdS5 × S5

Recently the worldsheet dual to free 4d N = 4 SYM has been proposed to be
the free field sigma model with the following field contents:

Z I = (λα, µα̇, ψa) = (λ1, λ2, µ1, µ2, ψ1, ψ2, ψ3, ψ4)

YJ = (µ†β , λ
†
β̇
, ψ†a ) = (µ†1, µ

†
2, λ
†
1, λ
†
2, ψ
†
1 , ψ

†
2 , ψ

†
3 , ψ

†
4 )

while they obey the “ambi-twistor” constraint

YIZ
I = 0

This worldsheet model precisely reproduces the spectrum of free 4d N = 4
SYM.

[Gaberdiel-Gopakumar’21]

New perspective: Sigma model on the twistorial AdS5 × S5 target space



Wedge modes

‘Physical’ gauge constraints:

Only modes (Z I )r , (YJ)r lying within the wedge −w−1
2
≤ r ≤ w−1

2
are excited

We can view these “wedge modes” as exciting a discrete set of w string bits
localised along the worldsheet.



We want to discuss a classical analysis of AdS5 twistor fields and see how the
notion of covering maps generalize to this case.



Twistor space of MC

Twistor space of the complexified Minkowski space MC corresponds to open
subset of CP3 with homogeneous co-ordinates

Z I = (λα, µα̇), α, α̇ = 1, 2

where a point xαα̇ ∈MC corresponds to a complex “line” in twistor space

µα̇ = xαα̇ λα

which can be rephrased as[
1
2
x2εαβ −xαβ̇
xα̇β εα̇β̇

]
︸ ︷︷ ︸

XIJ

[
λα

µα̇

]
︸ ︷︷ ︸

ZJ

= 0



AdS5 from Projective space

X IJ : skewsymmetric 4× 4 matrix with projective invariance X → λX ,
parameterizing CP5.

Then the metric

ds2 = −dX 2

X 2
+

(
X · d X

X 2

)2

with

X IJ = (Xb)IJ +
r 2

2
I IJ

becomes the AdS5 metric (in Poincare co-ordinates),

ds2 =
dr 2 + dxαβ̇dx

αβ̇

r 2

1.

X IJ
b =

[
εαβ xαβ̇

−x α̇β 1
2
x2εα̇β̇

]
parameterizes the boundary of AdS5. [(X IJ

b )2 = 0]

2.

I IJ =

[
0 0

0 εα̇β̇

]



Defining (Ambi-) Twistors

We now define the twistors (open subsets of CP3)

Z I = (λα, µα̇) = (λ1, λ2, µ1, µ2)

YJ = (µ†β , λ
†
β̇

) = (µ†1, µ
†
2, λ
†
1, λ
†
2)

These will play the role of ambitwistors for ∂AdS5, but more generally twistor
variables for the bulk AdS5.

Incidence relation on the boundary:

(Xb)IJ Z J
b = 0 ⇐⇒ µα̇ = x α̇βλ

β

X IJ
b Y b

J = 0 ⇐⇒ µ†α = −x β̇
α λ†

β̇
.

These imply
Cb ≡ Z I

bY
b
I = 0

.



Twistor space of AdS5

Incidence relation in the bulk:

Z I = X IJYJ

⇒
[
λα

µα̇

]
=

[
εαβ xαβ̇

−x α̇β 1
2
(x2 + r 2)εα̇β̇

][
µ†β
λ†
β̇

]
.

This automatically satisfies the ambitwistor constraint:

C = Z IYI = 0

which arises a fundamental gauge constraint [making quotient in psu(2, 2|4)1]
from the worldsheet analysis.

[Adamo-Skinner-Williams’16]

As r → 0, the bulk AdS5 incidence relations reduces to those on the boundary.



Twistor covering maps in AdS5

To describe the string configurations which capture the dual N = 4 SYM, we
promote the twistor variables and the AdS5 spacetime as fields on the
worldsheet:

X IJ(z , z̄), Z I (z), YJ(z), Ẑ I (z̄), ŶJ(z̄)

The AdS5 incidence relations hold point-wise

Z I (z) = X IJ(z , z̄)YJ(z)



Twistor covering maps in AdS5

For string configuration near the boundary of AdS5

µα̇(z) = X α̇
β(z , z̄)λβ(z)

µ†α(z) = −X β̇
α (z , z̄)λ†

β̇
(z) .

Clearly then

∂̄X α̇
β(z , z̄)λβ(z) = 0 ,

∂̄X β̇
α (z , z̄)λ†

β̇
(z) = 0 .

so that

∂̄X α̇
β(z , z̄) =

[
0 0
0 −∂̄V̄ (z̄)

]
=⇒ X α̇

β(z , z̄) =

[
−V (z) 0

0 −V̄ (z̄)

]
.

Locally we can always view X α̇
β(z , z̄) as a holomorphic embedding into the

boundary of an AdS3 subspace of the bulk AdS5 spacetime.



Maps to an AdS3 subspace

We restrict to the kinematic set up where the boundary insertion points {xi} lie
within a two-dimensional plane. (Not a restriction for 2,3 and 4-point functions
of N = 4 SYM), so that (globally) string lies on the boundary of the AdS3

subspace.

X α̇
β(z , z̄) =

[
−V (z) 0

0 −V̄ (z̄)

]
, λβ(z) =

[
λ1(z)

0

]
=⇒ µα̇(z) = −

[
V (z)λ1(z)

0

]
.

V (z) = −µ1(z)/λ1(z) is a covering map from the genus zero worldsheet to the
S2 boundary of the AdS3. Generalizing the results for AdS3 to this set up:

λ1(z) =
Rn−1(z)Q1

N(z)∏n
i=1(z − zi )

wi
2

, µ1(z) =
Rn−1(z)P1

N(z)∏n
i=1(z − zi )

wi
2

.

This ties up with Z I (z) =
∑ wi−1

2

r=− wi−1
2

(Z I )r
(z−zi )

r+1/2

[Bhat-Gopakumar-PM-Radhakrishnan’21]



Feynman covering

Correlator of n gauge-invariant scalar operators in the free N = 4 SYM:

〈O(w1)(x1) · · · O(wn)(xn)〉 =
∑
{nij}

C{nij}
∏
(i,j)

(
1

x2
ij

)nij

For the two-point function joining (xi , xj):

(
1
x2
ij

)w

, consider the following

covering map

Γ(z) =
Vj z

w + Vi

zw + 1
=

Pw (z)

Qw (z)

with Vk = x
(1)
k + ix

(2)
k .

Note that two points (xi , xj) can always be taken to lie on a plane,
corresponding states on the worldsheet are inserted at z = 0 and z =∞.

[Bhat-Gopakumar-PM-Radhakrishnan’21]



Feynman covering

It is convenient to view the covering map in u coordinate, where

z = exp
[
2πi

u

w

]
mapping a vertical strip (0 < Re u ≤ w) onto the sphere such that z = (0,∞)
are images of u = ±i∞, respectively, on the strip.

− iL

+ iL

zj

zi

w

Γ(u) ≡ V (z(u)) =
Vi + Vj

2
+

Vi − Vj

2i
tan(πu)

This is essentially the unique map for which the Schwarzian is a constant:

S [Γ(u)] =
Γ′′′

Γ′
− 3

2

(Γ′′

Γ′

)2

= 2π2 .

The unique Strebel quadratic differential on the strip with poles only at
u = ±i∞ is also just du2. Thus

φS(u)du2 =
1

2π2
S [Γ(u)]du2 .

This is a coordinate independent statement.



Feynman covering

Γ(u) ≡ V (z(u)) =
Vi + Vj

2
+

Vi − Vj

2i
tan(πu)

This is essentially the unique map for which the Schwarzian is a constant:

S [Γ(u)] =
Γ′′′

Γ′
− 3

2

(Γ′′

Γ′

)2

= 2π2 .

The unique Strebel quadratic differential on the strip with poles only at
u = ±i∞ is also just du2. Thus

φS(u) du2 =
1

2π2
S [Γ(u)] du2 .

This is a coordinate independent statement.



Feynman covering

The strip of width w is nothing other than the w double line edges glued
together

− iL

+ iL

zj

zi

w

We can try to compute the Nambu-Goto area of the worldsheet in the ”Strebel
gauge”:

ds2 = |φS(z)| dzdz̄



Strebel area of the covering surface

In the u-coordinate, the textcolorviolet”Strebel” area of the strip becomes
Aij = 2Lw , where we’ve introduced cutoff in spacetime ε:

|Vi − Γ(u = iL)| = |Vj − Γ(u = −iL)| = ε

− iL

+ iL

zj

zi

w

We find,

L =
1

4π2
log

(
x2
ij

ε2

)



Covering surface area computes Feynman propagator

− iL

+ iL

zj

zi

w

The Nambu-Goto weight with the ”Strebel” area of the strip is then

exp[−2πAij ] = exp[2π × 2Lw ] = ε2w

(
1

x2
ij

)w

.

[Bhat-Gopakumar-PM-Radhakrishnan’21]



For multi-point correlator

2π
nij
wi

zi

zj

Adding the areas of the strips near a vertex of the n-point correlator,

〈Ow1 (x1) · · · Own (xn)〉 =
∑
{nij}

C{nij} exp

[
2π
∑
i<j

Aij

]

[Bhat-Gopakumar-PM-Radhakrishnan’21]



Lessons (take home message)

1. Each Feynman graph can be associated to a point in the closed string
moduli space, via the Strebel correspondence. Sum over all feynman
diagrams defining the correlator goes over (in large twist limit) to an
integral over this moduli space.

2. Worldsheet fields can be seen as holomorphic covering map to the
twistorial target space.



Outlook

1. To obtain the AdS5 twistor incidence relation from worldsheet analysis.

[Gaberdiel-Gopakumar-PM-Knighton, in progress]

2. How does the Strebel differential deform away from the Schwarzian of
covering map if we take 1/N corrections?

[Gopakumar-PM-Sarkar, in progress]

3. Towards the string dual of 2d Yang Mills ...

[Komatsu-PM, in progress]

4. Making connection with the Hexagonalization program of N = 4 SYM.

5. Making connection with the Mellin amplitudes of the perturbative N = 4
SYM.



Thanks for your attention


