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1. Introduction



On-shell scattering amplitudes in quantum field theory

φ3 theory

S =

∫
ddx

[
− 1

2
∂µφ(x) ∂

µφ(x)− 1

2
m2 φ(x)2 +

1

6
g φ(x)3

]

⟨φ(x1)φ(x2)φ(x′1)φ(x′2) ⟩
↓ LSZ reduction formula

⟨ f | i ⟩ = ig2 (2π)dδd(k1 + k2 − k′1 − k′2)

×
[

1

(k1 + k2)2 +m2
+

1

(k1 − k′1)
2 +m2

+
1

(k1 − k′2)
2 +m2

]
+O(g4)



On-shell scattering amplitudes in string theory

open bosonic string∫ 1

0
dt ⟨ cV1(0)V2(t) cV3(1) cV4(∞) ⟩ disk

with
Vi(t) = : eikiX : (t)

Open bosonic string field theory

S = − 1

2
⟨Ψ , QΨ ⟩ − g

3
⟨Ψ ,Ψ ∗Ψ ⟩

↓

⟨Ψ1 ∗Ψ2 ,
b0
L0

(Ψ3 ∗Ψ4 ) ⟩+ ⟨Ψ4 ∗Ψ1 ,
b0
L0

(Ψ2 ∗Ψ3 ) ⟩



When actions are written in terms of homotopy algebras such as A∞ algebras
and L∞ algebras, expressions of on-shell scattering amplitudes in perturba-
tion theory are universal for both string field theories and ordinary field
theories.

action Q+m

↓

tree amplitude Pm
1

I+ hm
P

loop amplitude Pm
1

I+ hm+ iℏhU
P

Explicit calculation of loop amplitudes are in general difficult in string theory.

We expect that homotopy algebras can be useful in gaining insights into
quantum aspects of string field theories from ordinary field theories.



Digression

To provide a framework for proving the AdS/CFT correspondence, I want to
construct a complete theory before taking the low-energy limit of D-branes.

We may think that such a theory would be open-closed superstring field
theory, but my claim is that it can be described by open superstring field
theory with the source term for gauge-invariant operators.
(See arXiv:2006.16449 for more details of this scenario.)

The long-standing problem of constructing an action involving the Ramond
sector has been overcome in superstring field theory.

Kunitomo and Okawa, arXiv:1508.00366
Sen, arXiv:1508.05387

I am serious about quantizing open superstring field theory!



In addition to scattering amplitudes we find that correlation functions of
scalar field theories can also be described in terms of homotopy algebras.

We explain explicit expressions for correlation functions of scalar field theories
using quantum A∞ algebras presented in arXiv:2203.05366.

Then we further discuss the application to the renormalization group.

Let us rewrite textbooks on quantum field theory in terms of homotopy
algebras without using canonical quantization or the path integral.
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2. A∞ algebra



Open bosonic string field theory is described in terms of string field, which
is a state of the boundary conformal field theory.

The Hilbert space H can be decomposed based on the ghost number as

H = . . .⊕H−1 ⊕H0 ⊕H1 ⊕H2 ⊕ . . . ,

and the classical action is written in terms of Ψ in H1.

Consider an action of the form:

S = − 1

2
⟨Ψ, V1(Ψ) ⟩ − g

3
⟨Ψ, V2(Ψ,Ψ) ⟩ − g2

4
⟨Ψ, V3(Ψ,Ψ,Ψ) ⟩+O(g3) ,

where ⟨A1, A2 ⟩ is the BPZ inner product of A1 and A2, Vn is an n-string
product, and g is the string coupling constant.



This action is invariant up to O(g3) under the gauge transformation with the
gauge parameter Λ in H0 given by

δΛΨ = V1(Λ) + g (V2(Ψ,Λ)− V2(Λ,Ψ) )

+ g2 (V3(Ψ,Ψ,Λ)− V3(Ψ,Λ,Ψ) + V3(Λ,Ψ,Ψ) ) +O(g3)

if the multi-string products satisfy the following relations:

V1(V1(A1)) = 0 ,

V1(V2(A1, A2))− V2(V1(A1), A2)− (−1)A1V2(A1, V1(A2)) = 0 ,

V1(V3(A1, A2, A3)) + V3(V1(A1), A2, A3)

+ (−1)A1V3(A1, V1(A2), A3) + (−1)A1+A2V3(A1, A2, V1(A3))

− V2(V2(A1, A2), A3) + V2(A1, V2(A2, A3)) = 0 .

These relations can be extended to higher orders and called A∞ relations.
(In this talk all the discussions on cyclic properties are omitted.)



In open bosonic string field theory constructed by Witten, V1 and V2 are
given by the BRST operator Q and the star product as

V1(A1) = QA1 , V1(A1, A2) = A1 ∗A2 ,

and the A∞ relations are satisfied without higher products because of the
following properties

Q2 = 0 ,

Q (A1 ∗A2) = QA1 ∗A2 + (−1)A1A1 ∗QA2 ,

A1 ∗ (A2 ∗A3) = (A1 ∗A2) ∗A3 .

A set of multi-string products satisfying A∞ relations for the open string and
L∞ relations for the closed string can be constructed from an appropriate
decomposition of the moduli space of Riemann surfaces.

hep-th/9206084, Zwiebach



Let us simplify the description of A∞ relations in three steps.

Step 1: Degree

We introduce degree defined by

deg(A) = ϵ(A) + 1 mod 2 ,

where ϵ(A) is the Grassmann parity of A, and we define

ω(A1, A2) = (−1)deg(A1)⟨A1, A2 ⟩ ,
M1(A1) = V1(A1) ,

M2(A1, A2) = (−1)deg(A1) V2(A1, A2) ,

M3(A1, A2, A3) = (−1)deg(A2) V3(A1, A2, A3) ,

...



The A∞ relations are written as

M1(M1(A1)) = 0 ,

M1(M2(A1, A2)) +M2(M1(A1), A2) + (−1)deg(A1)M2(A1,M1(A2)) = 0 ,

M1(M3(A1, A2, A3)) +M3(M1(A1), A2, A3)

+ (−1)deg(A1)M3(A1,M1(A2), A3) + (−1)deg(A1)+deg(A2)M3(A1, A2,M1(A3))

+M2(M2(A1, A2), A3) + (−1)deg(A1)M2(A1,M2(A2, A3)) = 0 ,

...

The Grassmann parities of Vn are not uniform, but theMn are all degree-odd.



Step 2: Tensor products of H

We denote the tensor product of n copies of H by H⊗n. For an n-string
product cn(A1, A2, . . . , An) we define a corresponding operator cn which maps
H⊗n into H by

cn (A1 ⊗A2 ⊗ . . .⊗An) ≡ cn(A1, A2, . . . , An) .

We also introduce the vector space for the zero-string space denoted by H⊗0.
It is a one-dimensional vector space given by multiplying a single basis vector
1 by complex numbers. The vector 1 satisfies

1⊗A = A , A⊗ 1 = A

for any string field A.



Example

M1(M2(A1, A2)) +M2(M1(A1), A2) + (−1)deg(A1)M2(A1,M1(A2)) = 0

↓
M1M2 (A1 ⊗A2) +M2 (M1A1 ⊗A2) + (−1)deg(A1)M2 (A1 ⊗M1A2) = 0

We denote the identity map from H to H by I , and we write

M1A1 ⊗A2 = (M1 ⊗ I ) (A1 ⊗A2) ,

(−1)deg(A1)A1 ⊗M1A2 = ( I⊗M1 ) (A1 ⊗A2) .

We then have

M1M2 (A1 ⊗A2) +M2 (M1A1 ⊗A2) + (−1)deg(A1)M2 (A1 ⊗M1A2) = 0

↓
M1M2 (A1 ⊗A2) +M2 (M1 ⊗ I ) (A1 ⊗A2) +M2 ( I⊗M1 ) (A1 ⊗A2) = 0

↓
M1M2 +M2 (M1 ⊗ I ) +M2 ( I⊗M1 ) = 0



A∞ relations

M1M1 = 0 ,

M1M2 +M2 (M1 ⊗ I+ I⊗M1 ) = 0 ,

M1M3 +M3 (M1 ⊗ I⊗ I+ I⊗M1 ⊗ I+ I⊗ I⊗M1 )

+M2 (M2 ⊗ I+ I⊗M2 ) = 0 ,

...



Step 3: Coderivations

It is convenient to consider linear operators acting on the vector space TH
defined by

TH = H⊗0 ⊕H⊕H⊗2 ⊕H⊗3 ⊕ . . . .

We denote the projection operator onto H⊗n by πn.

For a map cn from H⊗n to H, we define an associated operator cn acting on
TH as follows.

cn πm = 0 for m < n ,

cn πn = cn πn ,

cn πn+1 = ( cn ⊗ I+ I⊗ cn )πn+1 ,

cn πn+2 = ( cn ⊗ I⊗ I+ I⊗ cn ⊗ I+ I⊗ I⊗ cn )πn+2 ,

...



An operator acting on TH of this form is called a coderivation.

We define M by
M = M1 +M2 +M3 + . . .

for coderivations Mn associated with Mn. Then the A∞ relations can be
compactly expressed as

M2 = 0 .

The information on the action can be encoded in a degree-odd coderivation
which squares to zero. Conversely, we can construct a gauge-invariant action
from a degree-odd coderivation which squares to zero.



When we consider projections onto subspaces of H, homotopy algebras have
turned out to provide useful tools.

• Projection onto on-shell states → on-shell scattering amplitudes
Kajiura, math/0306332

• Projection onto the physical sector
→ mapping between covariant and light-cone string field theories

Erler and Matsunaga, arXiv:2012.09521

• Projection onto the massless sector → the low-energy effective action
Sen, arXiv:1609.00459
Erbin, Maccaferri, Schnabl and Vošmera, arXiv:2006.16270
Koyama, Okawa and Suzuki, arXiv:2006.16710

Let us decompose M as
M = Q+m ,

where Q describes the free theory and m is for interactions. We consider
projections which commute with Q.



We denote the projection operator by P :

P 2 = P , P Q = QP .

We then promote P on H to P on TH as follows:

Pπ0 = π0 ,

Pπ1 = P π1 ,

Pπ2 = (P ⊗ P )π2 ,

Pπ3 = (P ⊗ P ⊗ P )π3 ,

...

The operators Q and P satisfy

P2 = P , QP = PQ .



In the context of the projection onto the massless sector, the propagator h
for massive fields is given by

h =
b0
L0

( I− P ) .

In general we consider h satisfying the following relations:

Qh+ hQ = I− P , hP = 0 , P h = 0 , h2 = 0 .

We then promote h on H to h on TH as follows:

hπ0 = 0 ,

hπ1 = hπ1 ,

hπ2 = (h⊗ P + I⊗ h )π2 ,

hπ3 = (h⊗ P ⊗ P + I⊗ h⊗ P + I⊗ I⊗ h )π3 ,

...



The relations involving Q, P , and h are promoted to the following relations

Qh+ hQ = I−P , hP = 0 , Ph = 0 , h2 = 0 ,

where I is the identity operator on TH.

The important point is that the theory after the projection inherits the A∞
structure from the theory before the projection as follows:

Q+m → PQP+Pm
1

I+ hm
P ,

which is known as homological perturbation lemma.



3. Formula for correlation functions



Let us consider φ3 theory in d dimensions:

S =

∫
ddx

[
− 1

2
∂µφ(x) ∂

µφ(x)− 1

2
m2 φ(x)2 +

1

6
g φ(x)3

]
.

To describe this action in terms of an A∞ algebra, we introduce two copies
of the vector space of functions of x. We denote them by H1 and H2, and H
is given by

H = H1 ⊕H2 .

We define ω, Q, and b2 by

ω (φ1(x), φ2(x) ) =

∫
ddxφ1(x)φ2(x) for φ1(x) ∈ H1 , φ2(x) ∈ H2 ,

Qφ(x) = ( − ∂2 +m2 )φ(x) ∈ H2 for φ(x) ∈ H1 ,

b2 (φ1(x)⊗ φ2(x) ) = − g

2
φ1(x)φ2(x) ∈ H2 for φ1(x) , φ2(x) ∈ H1 .



The A∞ structure of the classical action is described by Q + b2. The A∞
relations are trivially satisfied for this theory without gauge symmetries.

When we consider on-shell scattering amplitudes, we use the projection onto
on-shell states. The action of h on φ(x) in H2 is given by

hφ(x) =

∫
ddy

∫
ddp

(2π)d
e−ip (x−y)

p2 +m2 − iϵ
φ(y) .

In the case of the projection onto on-shell states, PQP vanishes and on-shell
scattering amplitudes at the tree level can be calculated from

P b2
1

I+ hb2
P .



When we discuss the quantum theory, we need to include conterterms. We
denote the coderivation after including counterterms by Q + m. On-shell
scattering amplitudes including loop diagrams can be calculated from

Pm
1

I+ hm+ iℏhU
P .

The operator U consists of maps from H⊗n to H⊗(n+2). When the vector
space H is given by H1 ⊕ H2, the operator U incorporates a pair of basis
vectors of H1 and H2. We denote the basis vector of H1 by eα, where α is
the label of the basis vectors. For H2 we denote the basis vector by eα, and
repeated indices are implicitly summed over. We use the following choice for
eα and eα:

. . .⊗ eα ⊗ . . .⊗ eα ⊗ . . . =

∫
ddp

(2π)d
. . .⊗ e−ipx ⊗ . . .⊗ eipx ⊗ . . . .



The action of U on H⊗0 is given by

U1 = eα ⊗ eα + eα ⊗ eα ,

and the action of U on H is given by

Uφ(x) = eα ⊗ eα ⊗ φ(x) + (−1)deg(φ)eα ⊗ φ(x)⊗ eα

+ (−1)deg(φ)φ(x)⊗ eα ⊗ eα + eα ⊗ eα ⊗ φ(x)

+ eα ⊗ φ(x)⊗ eα + (−1)deg(φ)φ(x)⊗ eα ⊗ eα .

A∞ algebras are extended to quantum A∞ algebras in the quantum theory.
The quantum A∞ relations are again trivially satisfied for this theory without
gauge symmetries.



If we recall that the projection onto the massless sector corresponds to inte-
grating out massive fields, carrying out the path integral completely should
correspond to the projection with

P = 0 .

The associated operator P corresponds to the projection onto H⊗0:

P = π0 .

This may result in a trivial theory at the classical case, but it can be nontrivial
for the quantum case and in fact it is exactly what we do when we calculate
correlation functions.



Let us consider scalar field theories in Euclidean space. We define f by

f =
1

I+ hm− hU
,

which corresponds to
1

I+ hm+ iℏhU

in Minkowski space.

While Pmf P vanishes, f is nonvanishing and this operator plays a central
role in generating Feynman diagrams.

We claim that information on correlation functions is encoded in f 1 associ-
ated with the case where P = 0.



More explicitly, correlation functions are given by

⟨φ(x1)φ(x2) . . . φ(xn) ⟩
= ωn (πn f 1 , δd(x− x1)⊗ δd(x− x2)⊗ . . .⊗ δd(x− xn) ) ,

where

ωn (φ1(x)⊗ φ2(x)⊗ . . .⊗ φn(x) , φ
′
1(x)⊗ φ′

2(x)⊗ . . .⊗ φ′
n(x) )

=

n∏
i=1

ω (φi(x) , φ
′
i(x) ) .

The formula may look complicated, but it states that πn f 1 gives the n-point
function by simply replacing x with xi in the i-th sector in H⊗n.



For example, when π3 f 1 takes the form

π3 f 1 =
∑
a

fa(x)⊗ ga(x)⊗ ha(x) ,

the three-point function is given by

⟨φ(x1)φ(x2)φ(x3) ⟩
= ω3 (π3 f 1 , δd(x− x1)⊗ δd(x− x2)⊗ δd(x− x3) )

=
∑
a

fa(x1) ga(x2)ha(x3) .

This can be summarized as the following replacement rule:

π3 f 1 =
∑
a

fa(x)⊗ ga(x)⊗ ha(x)

↓

⟨φ(x1)φ(x2)φ(x3) ⟩ =
∑
a

fa(x1) ga(x2)ha(x3) .



4. Explicit calculations



Let us first demonstrate that correlation functions of the free theory are
correctly reproduced. We denote correlation functions of the free theory by
⟨φ(x1)φ(x2) . . . φ(xn) ⟩(0). In this case f 1 is given by

f 1 =
1

I− hU
1 .

The action of h on φ(x) in H2 is given by

hφ(x) =

∫
ddy

∫
ddp

(2π)d
e−ip (x−y)

p2 +m2
φ(y) .

The two-point function can be calculated from π2 f 1. We find

π2 f 1 = π2 hU1 = eα ⊗ h eα =

∫
ddp

(2π)d
e−ipx ⊗ 1

p2 +m2
eipx .

Following the replacement rule, the two-point function is given by

⟨φ(x1)φ(x2) ⟩(0) = ω2 (π2 f 1 , δd(x− x1)⊗ δd(x− x2) )

=

∫
ddp

(2π)d
e−ip (x1−x2)

p2 +m2
.



The four-point function can be calculated from π4 f 1. We fikd

π4 f 1 = π4 hUhU1

= eβ ⊗ eα ⊗ h eα ⊗ h eβ + eα ⊗ eβ ⊗ h eα ⊗ h eβ

+ eα ⊗ h eα ⊗ eβ ⊗ h eβ .

The first term on the right-hand side is given by

eβ ⊗ eα ⊗ h eα ⊗ h eβ

=

∫
ddp1
(2π)d

∫
ddp2
(2π)d

e−ip2x ⊗ e−ip1x ⊗ 1

p21 +m2
eip1x ⊗ 1

p22 +m2
eip2x ,

and the contribution to the four-point function is∫
ddp1
(2π)d

∫
ddp2
(2π)d

e−ip2x1 e−ip1x2
1

p21 +m2
eip1x3

1

p22 +m2
eip2x4

=

∫
ddp1
(2π)d

e−ip1 (x2−x3)

p21 +m2

∫
ddp2
(2π)d

e−ip2 (x1−x4)

p22 +m2

= ⟨φ(x2)φ(x3) ⟩(0) ⟨φ(x1)φ(x4) ⟩(0) .



The second and third terms can be calculated similarly, and the four-point
function is given by

⟨φ(x1)φ(x2)φ(x3)φ(x4) ⟩(0)

= ω4 (π4 f 1 , δd(x− x1)⊗ δd(x− x2)⊗ δd(x− x3)⊗ δd(x− x4) )

= ⟨φ(x2)φ(x3) ⟩(0) ⟨φ(x1)φ(x4) ⟩(0) + ⟨φ(x1)φ(x3) ⟩(0) ⟨φ(x2)φ(x4) ⟩(0)

+ ⟨φ(x1)φ(x2) ⟩(0) ⟨φ(x3)φ(x4) ⟩(0) .

We have thus reproduced Wick’s theorem for four-point functions, and it is
not difficult to extend the analysis to six-point functions and further.



Let us next consider φ3 theory. The action including counterterms is given
by

S =

∫
ddx

[
1

2
Zφ ∂µφ(x) ∂µφ(x) +

1

2
Zmm2 φ(x)2 − 1

6
Zg g φ(x)

3 − Y φ(x)

]
,

where Y , Zφ, Zm, and Zg are constants.

The operators m0, m1, and m2 for this action are defined by

m0 1 = − Y ,

m1 φ(x) = − (Zφ − 1 ) ∂2φ(x) + (Zm − 1 )m2 φ(x) ,

m2 (φ1(x)⊗ φ2(x) ) = − g

2
Zg φ1(x)φ2(x) .

The coderivations corresponding to m0, m1, and m2 are denoted by m0, m1,
and m2, and we define m by

m = m0 +m1 +m2 .



Let us calculate correlation functions in perturbation theory with respect to
g. We expand Y , Zφ, Zm, and Zg in g as follows:

Y = g Y (1) +O(g3) ,

Zφ = 1 + g2Z(1)
φ +O(g4) ,

Zm = 1 + g2Z(1)
m +O(g4) ,

Zg = 1 + g2Z(1)
g +O(g4) .

Correspondingly, we expand m0, m1, and m2 in g as

m0 =

∞∑
ℓ=0

m
(ℓ)
0 , m1 =

∞∑
ℓ=0

m
(ℓ)
1 , m2 =

∞∑
ℓ=0

m
(ℓ)
2 ,

where m
(ℓ)
n is of O(gn−1+2ℓ ).



We also expand m in g as

m =

∞∑
ℓ=0

m(ℓ) ,

where
m(ℓ) = m

(ℓ)
0 +m

(ℓ)
1 +m

(ℓ)
2 .

The coderivation m(0) describes the interaction of the classical action and is
given by

m(0) = b2 .

The coderivation m(1) describes counterterms at one loop, and m
(1)
0 , m

(1)
1 ,

and m
(1)
2 are given by

m
(1)
0 1 = − g Y (1) ,

m
(1)
1 φ(x) = − g2Z(1)

φ ∂2φ(x) + g2Z(1)
m m2 φ(x) ,

m
(1)
2 (φ1(x)⊗ φ2(x) ) = − g3

2
Z(1)
g φ1(x)φ2(x) .



The one-point function can be calculated from π1 f 1.

π1 f 1 = − π1 hb2 hU1− π1 hm
(1)
0 1+O(g2)

= − h b2 ( e
α ⊗ h eα )− hm

(1)
0 1+O(g2) .

The explicit form of the terms of O(g) is given by

− h b2 ( e
α ⊗ h eα )− hm

(1)
0 1 =

g

m2

[
1

2

∫
ddp

(2π)d
1

p2 +m2
+ Y (1)

]
,

and the one-point function is given by

⟨φ(x1) ⟩ = ω1 (π1 f 1 , δd(x− x1) )

=
g

m2

[
1

2

∫
ddp

(2π)d
1

p2 +m2
+ Y (1)

]
+O(g2) .



We have reproduced the contribution from the one-loop tadpole diagram:

Note that the correct symmetry factor appeared. While we can make the
one-point function vanish at O(g) by choosing Y (1) to cancel the contribution
from the one-loop tadpole diagram, we leave it finite and keep track of the
appearance of one-loop tadpoles.



We define Γ
(1)
0 by

Γ
(1)
0 1 = b2 ( e

α ⊗ h eα ) +m
(1)
0 1 = − g

2

∫
ddp

(2π)d
1

p2 +m2
− g Y (1) .

The operator Γ
(1)
0 describes the linear term at one loop in the 1PI effective

action. We write the one-point function as

⟨φ(x1) ⟩ = ⟨φ(x1) ⟩(1) +O(g2) ,

where

⟨φ(x1) ⟩(1) = − ω1 (hΓ
(1)
0 1 , δd(x− x1) )

=
g

m2

[
1

2

∫
ddp

(2π)d
1

p2 +m2
+ Y (1)

]
.



The two-point function can be calculated from π2 f 1. We find

π2 f 1 = eα ⊗ h eα − eα ⊗ hΓ
(1)
1 h eα

+ eα ⊗ h b2 (h eα ⊗ hΓ
(1)
0 1 ) + eα ⊗ h b2 (hΓ

(1)
0 1⊗ h eα )

+ hΓ
(1)
0 1⊗ hΓ

(1)
0 1+O(g3) ,

where the action of Γ
(1)
1 on eikx in H1 is given by

Γ
(1)
1 eikx

=

[
− g2

2

∫
ddp

(2π)d
1

(p+ k)2 +m2

1

p2 +m2
+ g2 Z(1)

φ k2 + g2 Z(1)
m m2

]
eikx .

The two-point function is given by

⟨φ(x1)φ(x2) ⟩ = ω2 (π2 f 1 , δd(x− x1)⊗ δd(x− x2) )

= ⟨φ(x1)φ(x2) ⟩(0) + ⟨φ(x1)φ(x2) ⟩(1)C

+ ⟨φ(x1) ⟩(1) ⟨φ(x2) ⟩(1) +O(g3) .



The connected part is given by

⟨φ(x1)φ(x2) ⟩(1)C

= − g2
∫

ddp

(2π)d
e−ip (x1−x2)

( p2 +m2 )2

[
− 1

2

∫
ddℓ

(2π)d
1

(ℓ+ p)2 +m2

1

ℓ2 +m2

+ Z(1)
φ p2 + Z(1)

m m2

]
+ g2

∫
ddp

(2π)d
e−ip (x1−x2)

m2 ( p2 +m2 )2

[
1

2

∫
ddℓ

(2π)d
1

ℓ2 +m2
+ Y (1)

]
.



5. Schwinger-Dyson equations



Let us show that correlation functions described in terms of quantum A∞
algebras satisfy the Schwinger-Dyson equations. Since

( I+ hm− hU )
1

I+ hm− hU
1 = 1

and
πn+1 1 = 0 for n ≥ 0 ,

we have

πn+1 f 1+ πn+1 hmf 1− πn+1 hUf 1 = 0 for n ≥ 0 .

This equation is translated as

⟨φ(x1) . . . φ(xn)φ(y) ⟩

+

∞∑
k=0

∫
ddz

∫
ddp

(2π)d
e−ip(y−z)

p2 +m2
⟨φ(x1) . . . φ(xn)mk (φ(z)⊗ . . . ⊗ φ(z) ) ⟩

−
n∑

i=1

∫
ddp

(2π)d
e−ip (xi−y)

p2 +m2
⟨φ(x1) . . . φ(xi−1)φ(xi+1) . . . φ(xn) ⟩ = 0 .



We then acts the operator − ∂2
y +m2 to find

( − ∂2
y +m2 ) ⟨φ(x1) . . . φ(xn)φ(y) ⟩

+
∞∑
k=0

⟨φ(x1) . . . φ(xn)mk (φ(y)⊗ . . . ⊗ φ(y) ) ⟩

−
n∑

i=1

δd(y − xi) ⟨φ(x1) . . . φ(xi−1)φ(xi+1) . . . φ(xn) ⟩ = 0 .



Since

δS

δφ(y)
= ( − ∂2

y +m2 )φ(y) +

∞∑
k=0

mk (φ(y)⊗ . . . ⊗ φ(y) ) ,

we find

−
n∑

i=1

δd(y − xi) ⟨φ(x1) . . . φ(xi−1)φ(xi+1) . . . φ(xn) ⟩

+⟨φ(x1) . . . φ(xn)
δS

δφ(y)
⟩ = 0 .

We have thus shown that the Schwinger-Dyson equations are satisfied.



6. Renormalization group



The construction of h from h is not unique. In addition to P for P = 0, let
us introduce PΛ for the projection onto modes below the energy scale Λ, and
use h given by

h = hH + hL ,

where the propagator hH for high-energy modes satisfy

QhH + hH Q = I−PΛ , hH PΛ = 0 , PΛ hH = 0 , h2
H = 0

and the propagator hL for low-energy modes satisfy

QhL +hLQ = PΛ −P , hL ( I−PΛ ) = 0 , ( I−PΛ )hL = 0 , h2
L = 0 .



Then we can write f P as

1

I+ hm− hU
P

=
1

I+ hH m− hH U

(
I+ hL (m−U )

1

I+ hH m− hH U

)−1

P

=
1

I+ hH m− hH U
PΛ

1

I+ hLmΛ − hLU
P ,

where

mΛ = PΛ

[
(m−U )

1

I+ hH m− hH U
+U

]
PΛ .

The operator mΛ describes the Wilsonian effective action at the energy scale
Λ, and correlation functions are calculated from a product of the operator
for high-energy modes and the operator for low-energy modes.



We can introduce a sequence of projections and write f P as

1

I+ hm− hU
P =

∏
i

1

I+ himi − hiU
Pi

with
h =

∑
i

hi .

While perturbative expressions for correlation functions with the previous h
do not converge, this choice of h may lead to nonperturbative expressions for
correlation functions.



7. Conclusions and discussion



We proposed the formula

⟨φ(x1)φ(x2) . . . φ(xn) ⟩ = ωn (πn f 1 , δd(x−x1)⊗δd(x−x2)⊗. . .⊗δd(x−xn) )

for correlation function of scalar field theories in perturbation theory using
quantum A∞ algebras.

We then proved that correlation functions from our formula satisfy the Schwinger-
Dyson equations as an immediate consequence of the structure

( I+ hm− hU )
1

I+ hm− hU
1 = 1 .



Since the description in terms of homotopy algebras or the Batalin-Vilkovisky
formalism tends to be elusive and formal, we have presented completely ex-
plicit calculations for φ3 theory which involve renormalization at one loop.

We hope that this demonstration in this paper helps us convince ourselves
that any calculations of this kind in the path integral or in the operator
formalism can be carried out in the framework of quantum A∞ algebras as
well.



While the expressions for correlation functions in terms of homotopy algebras
are universal, our expressions are restricted to the case where H consists of
only two sectors H1 and H2. It would be important to extend our analysis
to more general cases.

We can extend the formula for correlation functions to incorporate Dirac
fermions.

Konosu and Okawa, in progress

Our ultimate goal is to provide a framework to prove the AdS/CFT corre-
spondence using open string field theory with source terms for gauge-invariant
operators. The quantum treatment of open string field theory must be cru-
cial for this program, and we hope that quantum A∞ algebras will provide
us with powerful tools in this endeavor.


