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Peturbative String Theory

▶ Two formulations for RNS string theory amplitude, from
different gauge fixings
▶ Super-Riemann Surface (SRS)
▶ Picture Changing Operator (PCO)

▶ PCO has subtleties
▶ Will show equivalence of the SRS and PCO formalisms

▶ Based on 2205.01106, 2205.10377

▶ Setting: Type II superstring theory in flat space at weak
coupling

For both formalisms, scattering amplitude is of the form

A(Vi ) =
∑
g ,ϵ,ϵ̄

g2g−2
s

22g

∫
Mg,n,ϵ,ϵ̄

Ωg ,n,ϵ,ϵ̄(Vi ) (1)
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The Worldsheet CFT

Recall the structure of the RNS type II superstring worldsheet
theory:

▶ Super-CFT: Super-Virasoro algebra, fermionic stress tensor
G (z)

▶ Matter: Xµ, ψµ, Ghosts: b, c , β, γ
▶ Nilpotent worldsheet BRST operator QB

▶ QB(b) = T ,QB(β) = G

▶ Also have δ(β) and δ(γ) operators
▶ δ

(∮
dz f (z)β(z)

)
is also well defined

Can rewrite ghosts in terms of rebosonized operators: ξ, η, ϕ

▶ ∂ξ = −∂β δ(β), ∂ϕ = βγ

▶ Have explicit formula for correlators
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The SRS Formalism

Integrate over super-moduli space of SRS’s, M. Integrand is

Ωg ,n,ϵ =

〈∏
k

Btkdt
k
∏
a

δ(Bνa)δ(dν
a)

n∏
i=1

Vi

〉
Sg,n,ϵ(t,ν)

(2)

Super-Riemann Surface (SRS): Gluing together patches with
coordinates (zi , θi ) using transition maps

zi = fij(zj) + θjgij(zj)hij(zj), (3)

θi = gij(zj) + θjhij(zj), (4)

where h2ij = ∂fij + gij∂gij .
Bosonic parameters: gij = 0 gives Riemann Surface with spin
structure
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The SRS Formalism

B terms are contour integrals:∑
Btkdt

k +
∑

Bνkdν
k = (5)∑

(ij)

∫
Cij

[dzi |dθi ]
2πi

(β(z) + θb(z)) [δzi − δθiθi ]|zj ,θj (6)

Correlators for non-split SRS (gij ̸= 0) can be calculated by
inserting similar G contours.



6/24

The PCO Formalism

▶ Integrate over bosonic moduli space of Riemann Surfaces with
spin structure, Mg ,n,ϵ, also pick section of bundle π : Y → M
of PCO locations.

▶ PCO:

X (z) = QB(ξ(z)) (7)

=
1

2

∮
dw

2πi
(w − z)−1G (w)δ(β(z))− 1

4
∂β(z)δ′(β(z)) (8)

▶ Integrand is de-form over Y,

Ω̃ =

〈
eπ

∗B
do∏
a=1

[X (za) + dξ(za)][X̃ (za) + d ξ̃(za)]
n∏

i=1

Vi

〉
Σ,ϵ

(9)
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Vertical Integration

▶ Section S of Y must not intersect locus of spurious
singularities
▶ Can only be done locally in patches

▶ Integration contour must be closed using ‘vertical segments’
with ξ(z1)− ξ(z2) terms.
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Codimension 0 – Disk Cutting

▶ Given PCO location za
▶ Introduce new coordinates parameterizing the neighborhood

around za, (w , η), with transition map

w = z − θνa

z − za
, (10)

η = θ − νa

z − za
(11)
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Codimension 0 – Disk Cutting

SRS integrand:[
1 + ν

∮
dz

2πi

G (z)

z − za

] [
1− 2ν∂β(za)dza

]
· δ(dν)

[
1

2
δ(β(za))−

1

4
ν∂b(za) δ

′(β(za))

] (12)

▶ Integration over ν gives X (za) + dξ(za)
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Supermanifolds

▶ Grassmann odd directions in supermanifolds not quite ‘real’ in
sense that there are not different points corresponding to
different values of coordinates
▶ Supermanifolds are purely abstract gadget for purpose of

integration

▶ Fermionic directions are infinitesimal. All points have all
fermionic coordinates zero
▶ Consider a bosonic coordinate ϵ satisfying ϵ2 = 0 – Just

calculates first order in power expansions, so is infinitesimal
▶ (ν1ν2)

2 = 0 for anticommuting ν1, ν2

▶ Algebraic Geometry point of view: geometry defined from ring
of functions on local patch

▶ Functions on supermanifold defined as a formal power series

f (x i , θa) = f0(x
i ) + θaf1,a(x

i ) + θaθbf1,ab(x
i ) + . . . (13)
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Supermanifolds

The heuristic picture is:
A supermanifold is a normal manifold thickened by infinitely thin
fermionic ‘fuzz’

Generically not a fiber bundle!
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Supermanifolds

▶ Manifold constructed by gluing together patches of Rn.
▶ Supermanifold M constructed by gluing together patches of

Rn|m

▶ Super-manifold with bosonic transition maps has setting all
νa = 0 independent of patch.

▶ Bosonic manifold Mred from forgetting fermionic coordinates,
have inclusion Mred ↪→ M

▶ Example: glue together patches (t, ν1, ν2), t < δ and
(t̃, ν1, ν2), t > −δ with transition map

t̃ = t + ν1ν2 (14)
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Integration in Supermanifolds

▶ Integral form is defined on patches, must match with
‘Jacobian’ (Berezinian) rescaling on overlap

▶ Example:

ω = [dt|dν1dν2](f (t) + g(t)ν1ν2) (15)

= [dt̃|dν1dν2](f (t̃) + (g(t̃)− f ′(t̃))ν1ν2) (16)

▶ Integrate using partition of unity: Supp(fa) ⊂ Ua,
∑

a fa = 1,∫
M
ω =

∑
a

∫
Ua

fa ω (17)
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Interpolation

π−1(−∞, 0) π̃−1(0,∞)I∗

▶ Two pieces – (t, ν1, ν2), t < δ; (t̃, ν1, ν2), t̃ > −δ, transition
map is

t̃ = t + ν1ν2 (18)

▶ Integral form:

ω = [dt|dν1dν2](f (t) + g(t)ν1ν2) (19)

= [dt̃|dν1dν2](f (t̃) + (g(t̃)− f ′(t̃))ν1ν2) (20)

▶ Just need to cancel boundary: interpolation piece: s ∈ [0, 1],
t = −sν1ν2.

I∗ω = −[ds|dν1dν2]ν1ν2f (0) (21)
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Interpolation

▶ Integral:∫ 0

−∞
g(t) dt +

∫ 1

0
f (0) ds +

∫ ∞

0
(g(t̃)− f ′(t̃)) dt̃ (22)

=

∫ ∞

−∞
g(t) dt − f (+∞) (23)

▶ Interpolation term needed for consistent result
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Interpolation

More generally:

▶ Split reduced space M based on dual triangulation into
domains Di , pick coordinates on each patch.

▶ For each patch, integrate as usual Berezinian integral –
integrating over fermionic fibers of constant bosonic
coordinates, then over the bosonic moduli

▶ To close integration contour, must also integrate pullback of
the integral form along

Ii1···ip+1 : ∆
p ×Di1···ip+1 × R0|no → M (24)

over the interpolating piece at the codimension p interface
between p + 1 domains.
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Codimension 1 – Moving a Single PCO

▶ Two disks centered at za and z ′a, with parameters νa and ν ′a
▶ Interpolation coordinates s, ν ′′a ,

νa = R(1− s)ν ′′a (25)

ν ′a = R ′sν ′′a (26)

▶ R and R ′ chosen to avoid coordinate degenerations. Rescaling
does not affect fiber on boundary.

▶ Integrating over s and ν ′′a returns ξ(z ′a)− ξ(za)

▶ If multiple PCO’s need to move, move one at a time.



18/24

Codimension ≥ 2

▶ Similar approach for higher codimension – split interpolating
contour into discrete moves, match moves with vertical
integration

▶ E.g., in codimension 2, have triangle moves with three
locations of a single PCO (evaluates to 0), square moves
commuting moves of two different PCO’s (evaluates to
product of ξ(z2)− ξ(z1))
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Summary

The correspondence between the SRS and PCO formalisms:

▶ PCO integrand can be interpreted as an integral over specific
choice of fermionic fibers for SRS super-moduli space

▶ Mismatch of fibers between patches requires interpolating
segments

▶ Vertical integration terms equal contribution from
interpolating segments
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Application: Genus Two

Explicit construction of PCO coordinates for M in genus two case:

▶ Convenient parameterization of bosonic moduli space using
double covers with six branch points

▶ Spin structure is partition of branch points into two types.
(3, 3) split is even spin structre, (5, 1) split is odd.

▶ Branched cover can be constructed by equation y2 = f (x), f
is a degree 6 polynomial.
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SRS at Genus Two

▶ Alternate description of SRS structure: ‘totally non-integrable
rank 0|1 sub-bundle of the tangent bundle’
▶ Fermionic differential operator D, defined up to local rescaling,

{D,D} is nowhere zero

▶ Spin structure is factorization f (x) = p(x)q(x). Let
α = y/p(x) = q(x)/y .

▶ Split SRS coordinates:
▶ η, non-degenerate where p(x) ̸= 0
▶ τ , non-degenerate where q(x) ̸= 0

▶ Transition map is τ = αη

▶ Dη = ∂η + αη∂x = αDτ
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Disc Cutting

▶ Place both PCO’s on majority type branch points for odd spin
structure, one on each type for even spin structure

▶ On a q = 0 branch point, disc coordinates are

wa = y − f ′(x)

2p(x)
η
f ′(x)νa

y
(27)

ηa = η − f ′(x)νa
y

(28)
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Odd Spin Structure

▶ Starting PCO locations: x1 and x2
▶ Final PCO locations: x3 and x2

Transition map is:

(x ′i , ν
′
1, ν

′
2) =

(
xi ,

x12
x32

ν1, ν2 +
x13
x23

)
(29)

▶ No change in fibers when changing PCO locations!

▶ Vertical integration contribution vanishes
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Even Spin Structure

▶ Branch point x2 moves when the moving PCO at x1:

(x ′2, ν
′
1, ν

′
2) =

(
x2 − 2f ′(x2)

x31
x23x21

ν1ν2, ν1, ν2

)
(30)

▶ Non-zero vertical integration contribution

▶ Can also match with Period Matrix projection used by
D’Hoker and Phong


