On the Relationship Between Super-Riemann Surfaces and PCOs

Charles Wang in collaboration with Xi Yin

Harvard University
Sept. 2022

Peturbative String Theory

- Two formulations for RNS string theory amplitude, from different gauge fixings
- Super-Riemann Surface (SRS)
- Picture Changing Operator (PCO)
- PCO has subtleties
- Will show equivalence of the SRS and PCO formalisms
- Based on 2205.01106, 2205.10377
- Setting: Type II superstring theory in flat space at weak coupling
For both formalisms, scattering amplitude is of the form

$$
\begin{equation*}
\mathcal{A}\left(\mathcal{V}_{i}\right)=\sum_{g, \epsilon, \bar{\epsilon}} \frac{g_{s}^{2 g-2}}{2^{2 g}} \int_{\mathcal{M}_{g, n, \epsilon, \bar{\epsilon}}} \Omega_{g, n, \epsilon, \bar{\epsilon}}\left(\mathcal{V}_{i}\right) \tag{1}
\end{equation*}
$$

The Worldsheet CFT

Recall the structure of the RNS type II superstring worldsheet theory:

- Super-CFT: Super-Virasoro algebra, fermionic stress tensor $G(z)$
- Matter: X^{μ}, ψ^{μ}, Ghosts: b, c, β, γ
- Nilpotent worldsheet BRST operator Q_{B}
- $Q_{B}(b)=T, Q_{B}(\beta)=G$
- Also have $\delta(\beta)$ and $\delta(\gamma)$ operators
- $\delta(\oint d z f(z) \beta(z))$ is also well defined

Can rewrite ghosts in terms of rebosonized operators: ξ, η, ϕ

- $\partial \xi=-\partial \beta \delta(\beta), \partial \phi=\beta \gamma$
- Have explicit formula for correlators

The SRS Formalism

Integrate over super-moduli space of SRS's, \mathfrak{M}. Integrand is

$$
\begin{equation*}
\Omega_{g, n, \epsilon}=\left\langle\prod_{k} \mathcal{B}_{t^{k}} d t^{k} \prod_{a} \delta\left(\mathcal{B}_{\nu^{a}}\right) \delta\left(d \nu^{a}\right) \prod_{i=1}^{n} \mathcal{V}_{i}\right\rangle_{\mathcal{S}_{g, n, \epsilon}(t, \nu)} \tag{2}
\end{equation*}
$$

Super-Riemann Surface (SRS): Gluing together patches with coordinates $\left(z_{i}, \theta_{i}\right)$ using transition maps

$$
\begin{align*}
z_{i} & =f_{i j}\left(z_{j}\right)+\theta_{j} g_{i j}\left(z_{j}\right) h_{i j}\left(z_{j}\right) \tag{3}\\
\theta_{i} & =g_{i j}\left(z_{j}\right)+\theta_{j} h_{i j}\left(z_{j}\right) \tag{4}
\end{align*}
$$

where $h_{i j}^{2}=\partial f_{i j}+g_{i j} \partial g_{i j}$.
Bosonic parameters: $g_{i j}=0$ gives Riemann Surface with spin structure

The SRS Formalism

\mathcal{B} terms are contour integrals:

$$
\begin{align*}
\sum \mathcal{B}_{t^{k}} d t^{k} & +\sum \mathcal{B}_{\nu^{k}} d \nu^{k}= \tag{5}\\
& \left.\sum_{(i j)} \int_{C_{i j}} \frac{\left[d z_{i} \mid d \theta_{i}\right]}{2 \pi i}(\beta(z)+\theta b(z))\left[\delta z_{i}-\delta \theta_{i} \theta_{i}\right]\right|_{z_{j}, \theta_{j}} \tag{6}
\end{align*}
$$

Correlators for non-split SRS $\left(g_{i j} \neq 0\right)$ can be calculated by inserting similar G contours.

The PCO Formalism

- Integrate over bosonic moduli space of Riemann Surfaces with spin structure, $\mathcal{M}_{g, n, \epsilon}$, also pick section of bundle $\pi: \mathcal{Y} \rightarrow \mathcal{M}$ of PCO locations.
- PCO:

$$
\begin{align*}
& \mathcal{X}(z)=Q_{B}(\xi(z)) \tag{7}\\
& =\frac{1}{2} \oint \frac{d w}{2 \pi i}(w-z)^{-1} G(w) \delta(\beta(z))-\frac{1}{4} \partial \beta(z) \delta^{\prime}(\beta(z)) \tag{8}
\end{align*}
$$

- Integrand is d_{e}-form over \mathcal{Y},

$$
\begin{equation*}
\widetilde{\Omega}=\left\langle e^{\pi^{*} \mathcal{B}} \prod_{a=1}^{d_{o}}\left[\mathcal{X}\left(z_{a}\right)+d \xi\left(z_{a}\right)\right]\left[\widetilde{\mathcal{X}}\left(\bar{z}_{a}\right)+d \widetilde{\xi}\left(\bar{z}_{a}\right)\right] \prod_{i=1}^{n} \mathcal{V}_{i}\right\rangle_{\Sigma, \epsilon} \tag{9}
\end{equation*}
$$

Vertical Integration

- Section \mathcal{S} of \mathcal{Y} must not intersect locus of spurious singularities
- Can only be done locally in patches
- Integration contour must be closed using 'vertical segments' with $\xi\left(z_{1}\right)-\xi\left(z_{2}\right)$ terms.

Codimension 0 - Disk Cutting

- Given PCO location z_{a}
- Introduce new coordinates parameterizing the neighborhood around $z_{a},(w, \eta)$, with transition map

$$
\begin{align*}
w & =z-\frac{\theta \nu^{a}}{z-z_{a}} \tag{10}\\
\eta & =\theta-\frac{\nu^{a}}{z-z_{a}} \tag{11}
\end{align*}
$$

Codimension 0 - Disk Cutting

SRS integrand:

$$
\begin{align*}
& {\left[1+\nu \oint \frac{d z}{2 \pi i} \frac{G(z)}{z-z_{a}}\right]\left[1-2 \nu \partial \beta\left(z_{a}\right) d z_{a}\right]} \tag{12}\\
& \cdot \delta(d \nu)\left[\frac{1}{2} \delta\left(\beta\left(z_{a}\right)\right)-\frac{1}{4} \nu \partial b\left(z_{a}\right) \delta^{\prime}\left(\beta\left(z_{a}\right)\right)\right]
\end{align*}
$$

- Integration over ν gives $\mathcal{X}\left(z_{a}\right)+d \xi\left(z_{a}\right)$

Supermanifolds

- Grassmann odd directions in supermanifolds not quite 'real' in sense that there are not different points corresponding to different values of coordinates
- Supermanifolds are purely abstract gadget for purpose of integration
- Fermionic directions are infinitesimal. All points have all fermionic coordinates zero
- Consider a bosonic coordinate ϵ satisfying $\epsilon^{2}=0$ - Just calculates first order in power expansions, so is infinitesimal
- $\left(\nu_{1} \nu_{2}\right)^{2}=0$ for anticommuting ν_{1}, ν_{2}
- Algebraic Geometry point of view: geometry defined from ring of functions on local patch
- Functions on supermanifold defined as a formal power series

$$
\begin{equation*}
f\left(x^{i}, \theta^{a}\right)=f_{0}\left(x^{i}\right)+\theta^{a} f_{1, a}\left(x^{i}\right)+\theta^{a} \theta^{b} f_{1, a b}\left(x^{i}\right)+\ldots \tag{13}
\end{equation*}
$$

Supermanifolds

The heuristic picture is:
A supermanifold is a normal manifold thickened by infinitely thin fermionic 'fuzz'

Generically not a fiber bundle!

Supermanifolds

- Manifold constructed by gluing together patches of \mathbb{R}^{n}.
- Supermanifold \mathfrak{M} constructed by gluing together patches of $\mathbb{R}^{n \mid m}$
- Super-manifold with bosonic transition maps has setting all $\nu_{a}=0$ independent of patch.
- Bosonic manifold $\mathcal{M}^{\text {red }}$ from forgetting fermionic coordinates, have inclusion $\mathcal{M}^{\text {red }} \hookrightarrow \mathfrak{M}$
- Example: glue together patches $\left(t, \nu_{1}, \nu_{2}\right), t<\delta$ and $\left(\widetilde{t}, \nu_{1}, \nu_{2}\right), t>-\delta$ with transition map

$$
\begin{equation*}
\widetilde{t}=t+\nu_{1} \nu_{2} \tag{14}
\end{equation*}
$$

t, ν_{1}, ν_{2}

$$
\widetilde{t}, \nu_{1}, \nu_{2}
$$

Integration in Supermanifolds

- Integral form is defined on patches, must match with 'Jacobian' (Berezinian) rescaling on overlap
- Example:

$$
\begin{align*}
\omega & =\left[d t \mid d \nu_{1} d \nu_{2}\right]\left(f(t)+g(t) \nu_{1} \nu_{2}\right) \tag{15}\\
& =\left[d \tilde{t} \mid d \nu_{1} d \nu_{2}\right]\left(f(\tilde{t})+\left(g(\tilde{t})-f^{\prime}(\tilde{t})\right) \nu_{1} \nu_{2}\right) \tag{16}
\end{align*}
$$

- Integrate using partition of unity: $\operatorname{Supp}\left(f_{a}\right) \subset \mathfrak{U}_{a}, \sum_{a} f_{a}=1$,

$$
\begin{equation*}
\int_{\mathfrak{M}} \omega=\sum_{a} \int_{\mathfrak{U}_{a}} f_{a} \omega \tag{17}
\end{equation*}
$$

Interpolation

- Two pieces $-\left(t, \nu_{1}, \nu_{2}\right), t<\delta ;\left(\tilde{t}, \nu_{1}, \nu_{2}\right), \tilde{t}>-\delta$, transition map is

$$
\begin{equation*}
\tilde{t}=t+\nu_{1} \nu_{2} \tag{18}
\end{equation*}
$$

- Integral form:

$$
\begin{align*}
\omega & =\left[d t \mid d \nu_{1} d \nu_{2}\right]\left(f(t)+g(t) \nu_{1} \nu_{2}\right) \tag{19}\\
& =\left[d \tilde{t} \mid d \nu_{1} d \nu_{2}\right]\left(f(\tilde{t})+\left(g(\tilde{t})-f^{\prime}(\tilde{t})\right) \nu_{1} \nu_{2}\right) \tag{20}
\end{align*}
$$

- Just need to cancel boundary: interpolation piece: $s \in[0,1]$, $t=-s \nu_{1} \nu_{2}$.

$$
\begin{equation*}
\mathfrak{I}^{*} \omega=-\left[d s \mid d \nu_{1} d \nu_{2}\right] \nu_{1} \nu_{2} f(0) \tag{21}
\end{equation*}
$$

Interpolation

- Integral:

$$
\begin{align*}
\int_{-\infty}^{0} g(t) d t & +\int_{0}^{1} f(0) d s+\int_{0}^{\infty}\left(g(\tilde{t})-f^{\prime}(\tilde{t})\right) d \tilde{t} \tag{22}\\
& =\int_{-\infty}^{\infty} g(t) d t-f(+\infty) \tag{23}
\end{align*}
$$

- Interpolation term needed for consistent result

Interpolation

More generally:

- Split reduced space \mathcal{M} based on dual triangulation into domains \mathcal{D}_{i}, pick coordinates on each patch.
- For each patch, integrate as usual Berezinian integral integrating over fermionic fibers of constant bosonic coordinates, then over the bosonic moduli
- To close integration contour, must also integrate pullback of the integral form along

$$
\begin{equation*}
\mathfrak{I}_{i_{1} \cdots i_{p+1}}: \Delta^{p} \times \mathcal{D}_{i_{1} \cdots i_{p+1}} \times \mathbb{R}^{0 \mid n_{o}} \rightarrow \mathfrak{M} \tag{24}
\end{equation*}
$$

over the interpolating piece at the codimension p interface between $p+1$ domains.

Codimension 1 - Moving a Single PCO

- Two disks centered at z_{a} and z_{a}^{\prime}, with parameters ν_{a} and ν_{a}^{\prime}
- Interpolation coordinates $s, \nu_{a}^{\prime \prime}$,

$$
\begin{align*}
& \nu_{a}=R(1-s) \nu_{a}^{\prime \prime} \tag{25}\\
& \nu_{a}^{\prime}=R^{\prime} s \nu_{a}^{\prime \prime} \tag{26}
\end{align*}
$$

- R and R^{\prime} chosen to avoid coordinate degenerations. Rescaling does not affect fiber on boundary.
- Integrating over s and $\nu_{a}^{\prime \prime}$ returns $\xi\left(z_{a}^{\prime}\right)-\xi\left(z_{a}\right)$
- If multiple PCO's need to move, move one at a time.

Codimension ≥ 2

- Similar approach for higher codimension - split interpolating contour into discrete moves, match moves with vertical integration
- E.g., in codimension 2, have triangle moves with three locations of a single PCO (evaluates to 0), square moves commuting moves of two different PCO's (evaluates to product of $\left.\xi\left(z_{2}\right)-\xi\left(z_{1}\right)\right)$

Summary

The correspondence between the SRS and PCO formalisms:

- PCO integrand can be interpreted as an integral over specific choice of fermionic fibers for SRS super-moduli space
- Mismatch of fibers between patches requires interpolating segments
- Vertical integration terms equal contribution from interpolating segments

Application: Genus Two

Explicit construction of PCO coordinates for \mathfrak{M} in genus two case:

- Convenient parameterization of bosonic moduli space using double covers with six branch points
- Spin structure is partition of branch points into two types.
$(3,3)$ split is even spin structre, $(5,1)$ split is odd.
- Branched cover can be constructed by equation $y^{2}=f(x), f$ is a degree 6 polynomial.

SRS at Genus Two

- Alternate description of SRS structure: 'totally non-integrable rank $0 \mid 1$ sub-bundle of the tangent bundle'
- Fermionic differential operator D, defined up to local rescaling, $\{D, D\}$ is nowhere zero
- Spin structure is factorization $f(x)=p(x) q(x)$. Let $\alpha=y / p(x)=q(x) / y$.
- Split SRS coordinates:
- η, non-degenerate where $p(x) \neq 0$
- τ, non-degenerate where $q(x) \neq 0$
- Transition map is $\tau=\alpha \eta$
- $D_{\eta}=\partial_{\eta}+\alpha \eta \partial_{x}=\alpha D_{\tau}$

Disc Cutting

- Place both PCO's on majority type branch points for odd spin structure, one on each type for even spin structure
- On a $q=0$ branch point, disc coordinates are

$$
\begin{align*}
& w_{a}=y-\frac{f^{\prime}(x)}{2 p(x)} \eta \frac{f^{\prime}(x) \nu_{a}}{y} \tag{27}\\
& \eta_{a}=\eta-\frac{f^{\prime}(x) \nu_{a}}{y} \tag{28}
\end{align*}
$$

Odd Spin Structure

- Starting PCO locations: x_{1} and x_{2}
- Final PCO locations: x_{3} and x_{2}

Transition map is:

$$
\begin{equation*}
\left(x_{i}^{\prime}, \nu_{1}^{\prime}, \nu_{2}^{\prime}\right)=\left(x_{i}, \frac{x_{12}}{x_{32}} \nu_{1}, \nu_{2}+\frac{x_{13}}{x_{23}}\right) \tag{29}
\end{equation*}
$$

- No change in fibers when changing PCO locations!
- Vertical integration contribution vanishes

Even Spin Structure

- Branch point x_{2} moves when the moving PCO at x_{1} :

$$
\begin{equation*}
\left(x_{2}^{\prime}, \nu_{1}^{\prime}, \nu_{2}^{\prime}\right)=\left(x_{2}-2 f^{\prime}\left(x_{2}\right) \frac{x_{31}}{x_{23} x_{21}} \nu_{1} \nu_{2}, \nu_{1}, \nu_{2}\right) \tag{30}
\end{equation*}
$$

- Non-zero vertical integration contribution
- Can also match with Period Matrix projection used by D'Hoker and Phong

