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Peturbative String Theory

» Two formulations for RNS string theory amplitude, from
different gauge fixings
» Super-Riemann Surface (SRS)
» Picture Changing Operator (PCO)

» PCO has subtleties
» Will show equivalence of the SRS and PCO formalisms
» Based on 2205.01106, 2205.10377

> Setting: Type Il superstring theory in flat space at weak
coupling
For both formalisms, scattering amplitude is of the form
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The Worldsheet CFT

Recall the structure of the RNS type Il superstring worldsheet
theory:

» Super-CFT: Super-Virasoro algebra, fermionic stress tensor
G(2)
> Matter: X*, ¥, Ghosts: b, c, 3,y
» Nilpotent worldsheet BRST operator Qg
> Qe(b)=T,Qs(8) =G
» Also have 6(3) and 6(~y) operators
> & (§dzf(2)B(z)) is also well defined
Can rewrite ghosts in terms of rebosonized operators: &, 1, ¢
> 0§ =-0B4(B), 0¢ = By

» Have explicit formula for correlators



The SRS Formalism

Integrate over super-moduli space of SRS’s, 9. Integrand is

g,nE:<H3tkdt [148.) dva)HV,->
Sg,n,e(t,v)

i=1

Super-Riemann Surface (SRS): Gluing together patches with
coordinates (z;, 0;) using transition maps

= fi(z) + 0;8i(z) hjj(z),
9/ = gij(z) + 0jhi(z),

where h,?j = Of;j + gjogjj-
Bosonic parameters: gj = 0 gives Riemann Surface with spin
structure



The SRS Formalism

B terms are contour integrals:

ZBtkdtk + ZBdeVk - (5)
Z/C 900 (32) + 06(2) oz — 636114, (6)
(i) 0

Correlators for non-split SRS (gj; # 0) can be calculated by
inserting similar G contours.



The PCO Formalism

> Integrate over bosonic moduli space of Riemann Surfaces with
spin structure, Mg , ., also pick section of bundle 7 : ) — M
of PCO locations.

» PCO:
X(2) = Qs(€(2)) (7)
= 3 f (w2 GW)I(E() ~ JOSEF(EE) (8)

» Integrand is de-form over ),

do ~ n
0= <e”*8 [T1%(z) + de(z)I[¥(Z.) + de(za)] [ | Vf>
a=1 i=1 pIRS
(9)



Vertical Integration

» Section S of ) must not intersect locus of spurious
singularities
» Can only be done locally in patches
P Integration contour must be closed using ‘vertical segments’
with £(z1) — &(z2) terms.
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Codimension 0 — Disk Cutting

» Given PCO location z,

» Introduce new coordinates parameterizing the neighborhood
around z,, (w,n), with transition map

w=2z— ov , (10)

(11)



Codimension 0 — Disk Cutting

SRS integrand:

[1 y 7{ 9z 6(2) } [1 - 2yaﬁ(za)dza}

-6(dv) [2 (8(za)) — Zuﬁb(za) 5’(6(23))]

(12)

> Integration over v gives X(z,) + d&(z,)



Supermanifolds

» Grassmann odd directions in supermanifolds not quite ‘real’ in
sense that there are not different points corresponding to
different values of coordinates

» Supermanifolds are purely abstract gadget for purpose of
integration

» Fermionic directions are infinitesimal. All points have all
fermionic coordinates zero

» Consider a bosonic coordinate ¢ satisfying €2 = 0 — Just
calculates first order in power expansions, so is infinitesimal
> (v11,)? = 0 for anticommuting v1, 1,

> Algebraic Geometry point of view: geometry defined from ring
of functions on local patch

» Functions on supermanifold defined as a formal power series

F(x',0%) = fi(x') 4+ 02Fa(x") + 020PF op(X) + ... (13)



Supermanifolds

The heuristic picture is:
A supermanifold is a normal manifold thickened by infinitely thin
fermionic ‘fuzz’

/\/
M

Generically not a fiber bundle!



Supermanifolds

» Manifold constructed by gluing together patches of R”".
» Supermanifold 91 constructed by gluing together patches of
RAlm
» Super-manifold with bosonic transition maps has setting all
v, = 0 independent of patch.
» Bosonic manifold M*4 from forgetting fermionic coordinates,
have inclusion M4 < 0
» Example: glue together patches (t,v1,12),t < § and
(t,v1,12),t > —& with transition map

t= t+ 1o (14)
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Integration in Supermanifolds

» Integral form is defined on patches, must match with
‘Jacobian’ (Berezinian) rescaling on overlap

> Example:

w = [dt|dvidwo](f(t) + g(t)viva) (15)
= [dE|dvidwo](f() + (g(F) — F'(E))r1r2)  (16)

> Integrate using partition of unity: Supp(fy) C U,, >, f =1,

/mw_gfafaw (17)



Interpolation
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» Two pieces — (t,v1,12), t < §; (t,v1,v2), t > —4, transition
map is

t=t+ 1w (18)
» Integral form:

w = [dt|dvidw](f(t) + g(t)vire) (19)

= [dE|dvidwo](F(T) + (g(F) — £(D))rar2)  (20)

» Just need to cancel boundary: interpolation piece: s € [0, 1],
t = —sviuo.

j = —[dS|dV1dI/2]l/1V2f( ) (21)



Interpolation

> Integral:

0 1 fo'e)
/ 2(t) dt—i—/o £(0) ds+/ (g(F) = FI(D) dF  (22)

o 0

_ / T g(t) dt — f(4o0) (23)

—0o0

» Interpolation term needed for consistent result



Interpolation

More generally:

>

| 4

Split reduced space M based on dual triangulation into
domains D;, pick coordinates on each patch.

For each patch, integrate as usual Berezinian integral —
integrating over fermionic fibers of constant bosonic
coordinates, then over the bosonic moduli

To close integration contour, must also integrate pullback of
the integral form along

Tiyoirn AP X Dy x RO — o (24)

i1 Ip+

over the interpolating piece at the codimension p interface
between p + 1 domains.



Codimension 1 — Moving a Single PCO

@

Vaq

» Two disks centered at z, and z}, with parameters v, and /]

> Interpolation coordinates s, v/,

va=R(1—s)) (25)
v, =R'sv] (26)

» R and R’ chosen to avoid coordinate degenerations. Rescaling
does not affect fiber on boundary.

» Integrating over s and v/ returns £(z) — &(z.)

» If multiple PCO’s need to move, move one at a time.



Codimension > 2

» Similar approach for higher codimension — split interpolating
contour into discrete moves, match moves with vertical
integration

» E.g., in codimension 2, have triangle moves with three

locations of a single PCO (evaluates to 0), square moves
commuting moves of two different PCO'’s (evaluates to

product of {(z2) — &(z1))



Summary

The

correspondence between the SRS and PCO formalisms:

PCO integrand can be interpreted as an integral over specific
choice of fermionic fibers for SRS super-moduli space

Mismatch of fibers between patches requires interpolating
segments

Vertical integration terms equal contribution from
interpolating segments



Application: Genus Two

Explicit construction of PCO coordinates for 91 in genus two case:

» Convenient parameterization of bosonic moduli space using
double covers with six branch points

» Spin structure is partition of branch points into two types.
(3,3) split is even spin structre, (5,1) split is odd.

» Branched cover can be constructed by equation y? = f(x), f
is a degree 6 polynomial.



SRS at Genus Two

> Alternate description of SRS structure: ‘totally non-integrable
rank 0|1 sub-bundle of the tangent bundle’

» Fermionic differential operator D, defined up to local rescaling,
{D, D} is nowhere zero
» Spin structure is factorization f(x) = p(x)q(x). Let
a=y/p(x) = q(x)/y.
» Split SRS coordinates:
» 7, non-degenerate where p(x) # 0
» 7, non-degenerate where g(x) # 0
» Transition map is 7 = an
» D, = 0y + andx = aD;



Disc Cutting

» Place both PCO’s on majority type branch points for odd spin
structure, one on each type for even spin structure

» On a g = 0 branch point, disc coordinates are
B f'(x) f'(x)va
20()"y
_ f(X)va
y

(27)

Wy =

Na =1 (28)



Odd Spin Structure

» Starting PCO locations: x; and x»
» Final PCO locations: x3 and x»
Transition map is:

X12 X13
(X vy ) = <x,-, 2, ) (20)
X32

X23

» No change in fibers when changing PCO locations!

» Vertical integration contribution vanishes



Even Spin Structure

» Branch point x» moves when the moving PCO at x;:

(x5, vy, V%) = <x2 —2f(x2) 31 V1V2,V1,1/2> (30)

X23X21

» Non-zero vertical integration contribution

» Can also match with Period Matrix projection used by
D'Hoker and Phong



